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Welcome

. Warning

This is an early draft. The book is incomplete. Every aspect of it is subject to change.
Many things might be incorrect. Are you sure you want to read this yet?

You don’t understand it, until you have coded it.

It’s a mantra that my mentors instilled in me in graduate school, and one that I propagate on
my students today. I believe it in deeply. If you want to understand a statistical model, it is
insufficient to interact with the model only through pen and paper, no matter how well you
organize the subscripts or how masterfully you interweave elements of the Greek and Roman
alphabets. To really understand a statistical model, you need to be able to simulate data from
the model, and then take that simulated data to an estimation routine that enables you to
recover the parameters of interest.

This is something you learn to do in graduate school. But, unless you have one of the most
caring and pedagogical advisers, no one teaches it to you! Instead, it’s a skill that students
develop independently and inefficiently between classes and assignment due dates or, in my
case, after I was knee-deep in my dissertation research. There is a tremendous imbalance
between how immensely important this skill is and the lack of time and instruction dedicated
to it.1 That imbalance is the motivation for this book.

I address this gap in the specific domain of Discrete Choice Modeling. I do so alongside
Kenneth Train’s masterful text Discrete Choice Methods with Simulation (Second Edition)
freely available online at https://eml.berkeley.edu/books/choice2.html.

Train and I align in our thinking:

“. . . the true value of the new approach to choice modeling is the ability to create
tailor-made models. The computation and programming steps that are needed to
implement a new model are usually not difficult. An important goal of the book is
to teach these skills as an integral part of the exposition of the models themselves.”2

1In this context, a closed-form expression means a way of writing the integral so that the anti-derivative sign is
not part of solution. For example, the integral

∫
x dx has the closed for expression x2/2 plus some constant.

We will see later that the Extreme Value distribution is often chosen for f predominantly because it leads to
a closed for expression for the choice probability p(y|x).

2More precisely, p(y = 2|x) = Pr(x + ε > 1|x = 0.5) = Pr(ε > 0.5) =
∫ 1

0.5 f (ε)dε = (0.5ε)|10.5 = 0.25.
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What is “not that difficult” for an experienced researcher can be immensely difficult for a
typical graduate student. The aim of this book is to ease that difficulty. I demonstrate R code
alongside the math. You will see Train’s pseudo-code transformed into working R code. No
mysteries will remain. The goal, in fact, is to provide you with much of the same instruction
that Train’s students received when taking his course. To borrow a quote Quintilian, Cobbett,
Cooke, and many others: my goal is to take you through the process of programming the
simulation and estimation of discrete choice models not so that you can understand, but so
that you cannot possibly misunderstand.

How to read this book

As the title suggests, the structure, topics, and organization of this book parallel Train (2009).
You should read — or most likely, re-read — one chapter from Train (2009) and then read and
work through the corresponding chapter here, alternating between our texts. Do not simply
read this book from start to finish without frequently returning to Train (2009). Doing so only
deprives you of the intended experience and likely dramatically reduces the amount you will
learn from the process.

In addition, I strongly encourage you write or copy the code as you work though this book. I
would mandate this if I could, but I’m not sitting there next to you and so I must settle for
simply sharing my encouragement. Write the code. Play with the code. Break the code. Make
it your own. That behavior is where deep understanding comes from, not from highlighting the
occasional sentence or equation you find important.

Prerequisites

This book is intended for a narrow audience, predominantly graduate students with an interest in
discrete choice modelling who will find value from seeing and interacting with the programmatic
implementation of the multinomial logit and its extended family of related models. In other
words, someone who read Train (2009) and thought how would I code that?

We will simulate data from the statistical models and then estimate the parameters of those
models from the simulated data. We will do all of this in R, a freely available software
environment for statistical computing and graphics. As a result, I assume you are reasonably
familiar with R. If not, there is a tremendous set of free online R resources collected and
organized at https://www.bigbookofr.com/. Popular books include Wickham, Cetinka-Rundel,
and Grolemund (2023) and Wickham (2019).

I also assume you have taken introductory statistics or econometrics courses, as the concepts
and techniques taught there are foundational for understanding and estimating the discrete
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choice models covered by Train (2009). In particular, you should have no uncertainty about
the difference between a model, the estimator, and the estimate. To briefly review:

• a model is the set of mathematical assumptions about how data are generated,
• the estimator (or equivalently, the estimation routine) is an algorithm or function of the

data, and
• the estimate is the result of applying the estimator to a particular dataset.

In my experience, students are often given a model and an estimator, after which much time
in the classroom is spent deriving properties of the estimator for that particular model, and
then a homework assignment asks students to implement the estimator on a dataset to find
an estimate. This approach puts almost no emphasis on the specification of the model or the
choice of estimator. For example, should part of the model be specified as β0 + β1x1 or should
it be β0 + β1x1 + β2x2? And once we have specified a model, should we derive an estimator
via least squares, the method of moments, maximum likelihood, a Bayesian approach, or some
other way?

If my description captures your experience in introductory statistics and econometrics courses
and you would like to review key ideas, I highly recommend Abramovich and Ritov (2023) on
the topic of mathematical statistics, Goldberger (1991) and Kennedy (2008) for econometrics,
and McElreath (2018) and Gelman et al. (2013) for Bayesian statistics.

Acknowledgments

I am immensely grateful to the teams that work on the R-Project, those at Posit who provide
RStudio and Quarto, and the related communities of developers, academics, and R users.
The free tools they provide and the welcoming communities they have established are both
exceptional.

I also thank my academic mentors Ella Honka, Peter Rossi, Eric Bradlow, and (although we
have yet to meet) Kenneth Train as well as the folks that tolerate me through my consulting
work, including Prachi Bhalerao, June Wu, Chris Diener, Keith Chrzan, and the hosts and
attendees of Sawtooth Software’s annual Analytics and Insights Summit. I have learned so
much from these researcher’s guidance and often their written work.

Special thanks go to generous people who reviewed and assisted with drafts of this book,
including Darren Aeillo, Kalyan Rallabandi, and Geoff Zheng.

Unquestionably, my deepest thanks go to Alison, Zach, and Ben for their patience and support.
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Colophon

An online version of this book is available at https://dcms-r.danyavorsky.com. The source of
the book is available at https://github.com/dyavorsky/dcms-r. The book is authored using
Quarto, an open-source scientific and technical publishing system that makes it easy to create
articles, presentations, websites, books, and other publications that combine text and executable
code.
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1 Introduction

It is instructive to start with the first sentence of Train (2009) Section 1.3, “Discrete choice
analysis consists of two interrelated tasks: specification of the behavioral model and estima-
tion of the parameters of that model” (emphasis added). In particular, chapters 1 and 2 of
Train (2009) only specify models; there is not even a hint of model estimation. And since I
follow Train (2009), we too begin with a focus on model specification.

Let me be clear: many students will see y and x later in this section and immediate think about
“fitting” a model; that is, they assume they have data that they will put into an estimation
routine to find estimates of the parameters of the model. We are not there yet! At this early
stage in the book, we are only specifying models; that is, listing sets of assumptions about data
generating processes and exploring the implications of those assumptions. There is no data yet.
There might be parameters introduced in our choice of model specification, but even if so, we
are not yet estimating those parameters. Have patience, we will eventually do these things.

1.1 Recap of Train Ch. 1

Train denotes the outcome in any given situation as y, determined by some observable factors
collected in the vector x and some unobservable factors collected in the vector ε. The factors
(x and ε) relate to the agent’s choice (y) through a function y = h(x, ε). We assume for the
moment that we know h(·) and that x and ε are length-one vectors (i.e., scalars) denoted x
and ε.

Since we do not observe ε, we can’t predict y exactly. Instead, we focus on the probability of y,
that is:

p(y|x) = Pr (ε such that h(x, ε) = y)
= Pr (I [h(x, ε) = y] = 1)

=
∫

I [h(x, ε) = y] f (ε) dε

(1.1)
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For certain special choices of h and f , a closed-form expression1 for the integral is available.
But more generally, for almost any choice of h and f , we can approximate the integral through
simulation. Train provides pseudo code on how to do so:

1. Repeat the following two steps many (r = 1, . . . , R) times:

• Draw ε(r) from f (ε).
• Determine whether h(x, ε(r)) = y. If so, set I (r) = 1; else set I (r) = 0.

2. Average the R values of I (r)

Next we look at two examples where we use this procedure to approximate the p(y|x) integral.

1.2 A Simple Example

Let’s first set up a toy example to demonstrate how simulation can approximate the p(y|x)
integral. Suppose x = 0.5 and ε is uniformly distributed between -1 and 1. Define h(x, ε) to
be:

h(x, ε) =


0 if x + ε < 0
1 if x + ε ∈ [0, 1]
2 if x + ε > 1

(1.2)

We’ll focus on the outcome y = 2. You can probably intuit that the p(y = 2|x) = 0.25 since
only one quarter of the time will ε be sufficiently positive to make x + ε > 1.2 Nevertheless,
let’s approximate the integral representation of p(y = 2|x) through simulation to ensure we
understand the process.

To walk you through the code, we first set a seed so that the pseudo-random numbers generated
by runif() can be replicated exactly each time the code is run (even on different computers).
We then specify that we will use 1,000 draws in the simulation and we create an vector I to
hold our results. The simulation occurs via a for() loop where each time through the loop
we take a draw of ε, calculate 0.5 + ε and check whether that sum is greater than one. If so,
then h(x, ε) = 2 matching the value of y for the choice probability we want to assess — i.e.,
p(y = 2|x) — and thus we store a 1 in the rth position of I; otherwise we store a 0. We then
average the values in I to get our approximation of p(y = 2|x).

1In this context, a closed-form expression means a way of writing the integral so that the anti-derivative sign is
not part of solution. For example, the integral

∫
x dx has the closed for expression x2/2 plus some constant.

We will see later that the Extreme Value distribution is often chosen for f predominantly because it leads to
a closed for expression for the choice probability p(y|x).

2More precisely, p(y = 2|x) = Pr(x + ε > 1|x = 0.5) = Pr(ε > 0.5) =
∫ 1

0.5 f (ε)dε = (0.5ε)|10.5 = 0.25.

10



set.seed(1234)

R <- 1000
I <- vector(length=R)

for(r in 1:R) {
eps <- runif(1, min=-1, max=1)
h <- 0.5 + eps
I[r] <- as.integer(h > 1)

}
mean(I)

[1] 0.258

The simulated value 0.258 approximates the exact value 0.25 and can be made closer by
increasing the number of draws used in the simulation.

R users will recognize that we can shorten the code by taking advantage of R’s vectorized
functions and its conversion of boolean values to 0/1 when used in mathematical operations.
Here is a shorter implementation of the simulation; whether it’s “better” code is a matter of
preference.

set.seed(1234)
R <- 1000
mean( runif(R, min=-1, max=1) + 0.5 > 1 )

[1] 0.258

That’s it. If you can generate pseudo-random draws from the density f and you know h,
approximating a choice probability by simulation requires only a handful of lines of code.

1.3 A Binary Logit Model Example

As an example of a model with a complete closed-form solution, Train provides the binary logit
model.

The “binary” part refers to the aspect of the model whereby the decision maker does one of two
things; they either take an action (y = 1) or not (y = 0). To tie this model into a framework of
behavior, we start with a utility function U . In Train’s specific example, utility is specified
as
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U (x, β, ε) = x′β + ε (1.3)

where x is a vector of observable explanatory variables, β is a vector of parameters that
through the functional form x′β effectively serve as weights on the covariates, and ε is a scalar
index collecting the value of information used by the decision maker but unobserved to the
researcher.

In this model, the threshold for action is 0. That is, we can specify h as:

h(x, β, ε) =
{

0 if U ≤ 0
1 if U > 0

(1.4)

The “logit” part of the model’s name refers to the choice of f . The binary logit model assumes
f is the logistic distribution:

f (ε) = e-ε

(1 + e-ε)2 (1.5)

Having specified h and f , let’s choose some values for x and β and use simulation to approximate
the integral for p(y|x, β). Let’s pick x = (0.5, 2) and β = (3, -1) such that x′β = (0.5)(3) +
(2)(-1) = 1.5 - 2 = -0.5. We know from the closed-form solution to this model provided by Train
that, with these values of x and β, the probability the decision maker takes action is:

p(y = 1|x, β) = ex′β

1 + ex′β
= e-0.5

1 + e-0.5 = 0.3775407 (1.6)

We can approximate this integral as before. Below I use the function rlogis() to take R=1000
draws from the binary logistic distribution, and I approximate the integral with the proportion
of times x′β + ε is greater than 0:

set.seed(2345)
R <- 1000

x <- c(0.5, 2)
beta <- c(3, -1)

U <- as.vector(x %*% beta) + rlogis(R)
mean(U > 0)

[1] 0.364

Our simulated value 0.364 approximates the exact value of the integral 0.378.
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1.4 Key Learnings

The key learning from this chapter is that with discrete choice models our focus is on the
probability of outcome y. That outcome results from the joint distribution f of unobserved
factors ε and the behavior model h that relates y to (x, ε). The probability p(y|x) can be
written in closed form for only very special choices of f and h, but for almost any choice of f
and h we can simulate p(y|x).
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